Complementary reductions for two qubits D

نویسنده

  • Jonas Kahn
چکیده

Reduction of a state of a quantum system to a subsystem gives partial quantum information about the true state of the total system. In connection with optimal state determination for two qubits, the question was raised about the maximum number of pairwise complementary reductions. The main result of the paper tells that the maximum number is 4, that is, if A;A; : : : ;A are pairwise complementary (or quasi-orthogonal) subalgebras of the algebra M4(C) of all 4 4 matrices and they are isomorphic to M2(C), then k 4. The proof is based on a Cartan decomposition of SU(4). In the way to the main result, contributions are made to the understanding of the structure of complementary reductions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 6 Complementary reductions for two qubits

Reduction of a state of a quantum system to a subsystem gives partial quantum information about the true state of the total system. In connection with optimal state determination for two qubits, the question was raised about the maximum number of pairwise complementary reductions. The main result of the paper tells that the maximum number is 4, that is, if A,A, . . . ,A are pairwise complementa...

متن کامل

ua nt - p h / 06 08 22 7 v 2 2 6 O ct 2 00 6 Complementary reductions for two qubits

Reduction of a state of a quantum system to a subsystem gives partial quantum information about the true state of the total system. In connection with optimal state determination for two qubits, the question was raised about the maximum number of pairwise complementary reductions. The main result of the paper tells that the maximum number is 4, that is, if A,A, . . . ,A are pairwise complementa...

متن کامل

ua nt - p h / 06 08 22 7 v 1 2 9 A ug 2 00 6 Complementary reductions for two qubits

In connection with optimal state determination for two qubits, the question was raised about the maximum number of pairwise complementary reductions. The main result of the paper tells that the maximum number is 4, that is, if A1,A2, . . . ,Ak are pairwise complementary (or quasiorthogonal) subalgebras of the algebra M4(C) of all 4× 4 matrices and they are isomorphic to M2(C), then k ≤ 4. In th...

متن کامل

حفظ و مقایسه درهم‌تنیدگی، ناسازگاری و همدوسی کوانتومی بین کیوبیت‌های متحرک در کاواک‌های نشت کننده

In this study, we consider a composed system consisting of two identical non-interacting subsystems. Each sub-system is made of a moving qubit into a leaky cavity. The study of the dynamic of the composed system revealed that compared with the stationary qubits, entanglement, quantum discord and coherence between two moving qubits remained close to their initial values as time went by. In parti...

متن کامل

Quantum Information Cannot Be Split into Complementary Parts

We prove a new impossibility for quantum information (the no-splitting theorem): an unknown quantum bit (qubit) cannot be split into two complementary qubits. This impossibility, together with the no-cloning theorem, demonstrates that an unknown qubit state is a single entity, which cannot be cloned or split. This sheds new light on quantum computation and quantum information.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007